Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine

نویسندگان
چکیده

منابع مشابه

Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the...

متن کامل

Mapping VHR Water Depth, Seabed and Land Cover Using Google Earth Data

Google Earth (GE) provides very high resolution (VHR) natural-colored (red-green-blue, RGB) images based on commercial spaceborne sensors over worldwide coastal areas. GE is rarely used as a direct data source to address coastal issues despite the tremendous potential of data transferability. This paper describes an inexpensive and easy-to-implement methodology to construct a GE natural-colored...

متن کامل

Multitemporal settlement and population mapping from Landsat using Google Earth Engine

As countries become increasingly urbanized, understanding how urban areas are changing within the landscape becomes increasingly important. Urbanized areas are often the strongest indicators of human interaction with the environment, and understanding how urban areas develop through remotely sensed data allows for more sustainable practices. The Google Earth Engine (GEE) leverages cloud computi...

متن کامل

Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping

Google Earth (GE) releases free images in high spatial resolution that may provide some potential for regional land use/cover mapping, especially for those regions with high heterogeneous landscapes. In order to test such practicability, the GE imagery was selected for a case study in Wuhan City to perform an object-based land use/cover classification. The classification accuracy was assessed b...

متن کامل

Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data

Temporal-related features are important for improving land cover classification accuracy using remote sensing data. This study investigated the efficacy of phenological features extracted from time series MODIS Normalized Difference Vegetation Index (NDVI) data in improving the land cover classification accuracy of Landsat data. The MODIS NDVI data were first fused with Landsat data via the Spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2019

ISSN: 2072-4292

DOI: 10.3390/rs11243023